Feeding and the Rhodopsin Family G-Protein Coupled Receptors in Nematodes and Arthropods

نویسندگان

  • João C.R. Cardoso
  • Rute C. Félix
  • Vera G. Fonseca
  • Deborah M. Power
چکیده

In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The repertoire of G-protein-coupled receptors in fully sequenced genomes.

The superfamily of G-protein-coupled receptors (GPCRs) is one of the largest and most studied families of proteins. We created Hidden Markov Models derived from sorted groups of GPCRs from our previous detailed phylogenetic classification of human GPCRs and added several other models derived from receptors not found in mammals. We used these models to search entire Genscan data sets from 13 spe...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

PCR screening of the Wolbachia in some arthropods and nematodes in Khuzestan province

Wolbachia is an obligatory, intracellular α-proteobacterium which infect the reproductive and somatic tissues of some arthropod and nematode populations. Because there are not any available data on the presence of this bacterium in Iran, the present study was done to determine the presence of this bacterium among 30 species of arthropods and nematodes. After DNA extraction from samples, we scre...

متن کامل

Expression, purification, and characterization of the G protein-coupled receptor kinase GRK6.

G protein-coupled receptor kinases (GRKs), such as rhodopsin kinase and beta-adrenergic receptor kinase (beta ARK), are involved in mediating agonist-specific phosphorylation and desensitization of G protein-coupled receptors. GRK6 is the most recently identified member of the GRK family and displays higher homology with GRK5 (70.1% amino acid identity) and IT11 (68.5%) compared to beta ARK (37...

متن کامل

Structure of rhodopsin and the superfamily of seven-helical receptors: the same and not the same.

The crystal structure of rhodopsin provides significant insights concerning structure/activity relationships in visual pigments and related G-protein-coupled receptors. The specific arrangement of seven-transmembrane helices is stabilized by a series of intermolecular interactions that appear to be conserved among Family A receptors. However, the potential for structural and functional diversit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012